AMD APU A10-5750M Quad-Core
Intel Core i5-2410M 2.3GHz
vs
7
7
Select any two CPUs for comparison

Gaming Performance Comparison

In terms of overall gaming performance, the AMD APU A10-5750M Quad-Core is marginally better than the Intel Core i5-2410M 2.3GHz when it comes to running the latest games. This also means it will be less likely to bottleneck more powerful GPUs, allowing them to achieve more of their gaming performance potential.

The APU A10-5750M Quad-Core was released over a year more recently than the Core i5-2410M 2.3GHz, and so the APU A10-5750M Quad-Core is likely to have better levels of support, and will be more optimized for running the latest games.

The APU A10-5750M Quad-Core has 2 more cores than the Core i5-2410M 2.3GHz. With 4 cores, the APU A10-5750M Quad-Core is much less likely to struggle with the latest games, or bottleneck high-end graphics cards when running them.

More important for gaming than the number of cores and threads is the clock rate. Problematically, unless the two CPUs are from the same family, this can only serve as a general guide and nothing like an exact comparison, because the clock cycles per instruction (CPI) will vary so much.

The APU A10-5750M Quad-Core and Core i5-2410M 2.3GHz are not from the same family of CPUs, so their clock speeds are by no means directly comparable. Bear in mind, then, that while the APU A10-5750M Quad-Core has a 0.2 GHz faster frequency, this is not always an indicator that it will be superior in performance, despite frequency being crucial when trying to avoid GPU bottlenecking. As such, we need to look elsewhere for more reliable comparisons.

Aside from the clock rate, the next-most important CPU features for PC game performance are L2 and L3 cache size. Faster than RAM, the more cache available, the more data that can be stored for lightning-fast retrieval. L1 Cache is not usually an issue anymore for gaming, with most high-end CPUs eking out about the same L1 performance, and L2 is more important than L3 - but L3 is still important if you want to reach the highest levels of performance. Bear in mind that although it is better to have a larger cache, the larger it is, the higher the latency, so a balance has to be struck.

The APU A10-5750M Quad-Core has a 3584 KB bigger L2 cache than the Core i5-2410M 2.3GHz, and although the APU A10-5750M Quad-Core does not appear to have an L3 cache, its larger L2 cache means that it wins out in this area.

The maximum Thermal Design Power is the power in Watts that the CPU will consume in the worst case scenario. The lithography is the semiconductor manufacturing technology being used to create the CPU - the smaller this is, the more transistors that can be fit into the CPU, and the closer the connections. For both the lithography and the TDP, it is the lower the better, because a lower number means a lower amount of power is necessary to run the CPU, and consequently a lower amount of heat is produced.

Both the APU A10-5750M Quad-Core and the Core i5-2410M 2.3GHz have the same TDP of 35 Watts, and were created with the same manufacturing size of 32 nm, which means they will affect your yearly electricity bill about equally.

The APU A10-5750M Quad-Core and the Core i5-2410M 2.3GHz both have an on-board GPU, which means that they will be capable of running basic graphics applications (i.e., games) without the need for a dedicated graphics card.

For an in-depth GPU comparison, click on the GPU comparison icon that you can find throughout Game-Debate:

On-board GPUs tend to be fairly awful in comparison to dedicated cards from the likes of AMD or Nvidia, but as they are built into the CPU, they also tend to be cheaper and require far less power to run (this makes them a good choice for laptops). We would recommend a dedicated card for running the latest games, but integrated GPUs are improving all the time and casual gamers may find less recent games perform perfectly acceptably.

CPU Core Details

CPU CodenameRichlandSandy Bridge
MoBo SocketSocket FS1rPGA 988A / B / Socket G1 / G2
Notebook CPUyesyes
Release Date12 Mar 201320 Feb 2011
CPU LinkGD LinkGD Link
Approved

CPU Technical Specifications

CPU Cores4vs2
Clock Speed2.5 GHzvs2.3 GHz
Turbo Frequency-vs-
Max TDP35 Wvs35 W
Lithography32 nmvs32 nm
Bit Width-vs-
Virtualization Technologynovsno
Comparison

CPU Cache and Memory

L1 Cache Size-vs128 KB
L2 Cache Size4096 KBvs512 KB
L2 Cache Speed-vs-
L3 Cache Size-vs3 MB
ECC Memory Supportnovsno
Comparison

CPU Graphics

GraphicsRadeon HD 8650GIntel HD Graphics 3000 Mobile
Base GPU Frequency-vs-
Max GPU Frequency-vs-
DirectX-vs-
Displays Supported-vs-
Comparison

CPU Package and Version Specifications

Package Size-vs-
Revision-vs-
PCIe Revision-vs-
PCIe Configurations-vs-

Gaming Performance Value

Performance Value

Can I Run It

Check any game system requirements


CPU Mini Review

Mini ReviewAPU A10-5750M Quad-Core is a high-end mobile processor based on the 32nm, Richland micro-architecture.
It offers 4 Cores, initially clocked at 2.5GHz that go up to 3.5GHz, in Turbo Mode and 4MB of L2 Cache. It features integrated Graphics called Radeon HD 8650G which offer 384 Shader Processing Units and perform substantially better than Radeon HD 7660G. The max memory speed supported by the CPU is DDR3-1866. It consumes up to 35 Watt.
Expect a 10% performance boost when compared to its predecessor (A10-4600M). This CPU is still a bottleneck for high-end GPUs such as Radeon HD 7970M/GeForce GTX 680M and should only be paired with performance GPUs - Radeon HD 7850M/GeForce GTX 660M.
Sandy Bridge, formerly Gesher, is the codename for a processor microarchitecture developed by Intel as the successor to Nehalem. Based on the 32 nm process, development began in 2005 at Intel's Israel Development Center in Haifa. Processors based on this architecture are marketed as the second generation of the Core i series and were announced on January 3, 2011. They are available from January 9, 2011 and onwards depending on market segment