Select any two CPUs for comparison
VS

Gaming Performance Comparison

Recommended System Requirements
Game Core 2 Duo U2500 1.2GHz Celeron M 550 2GHz
Cyberpunk 2077 1469% 1537%
Assassins Creed: Valhalla 2012% 2104%
Call of Duty: Black Ops Cold War 1420% 1487%
FIFA 21 1367% 1431%
Microsoft Flight Simulator 1677% 1755%
Watch Dogs Legion 2012% 2104%
World of Warcraft: Shadowlands 2339% 2445%
Horizon: Zero Dawn 1677% 1755%
Grand Theft Auto VI 2478% 2591%
Genshin Impact 1088% 1140%

In terms of overall gaming performance, the Intel Core 2 Duo U2500 1.2GHz is marginally better than the Intel Celeron M 550 2GHz when it comes to running the latest games. This also means it will be less likely to bottleneck more powerful GPUs, allowing them to achieve more of their gaming performance potential.

The Celeron M 550 was released less than a year after the Core 2 Duo, and so they are likely to have similar levels of support, and similarly optimized performance when running the latest games.

Both CPUs exhibit very poor performance, so rather than upgrading from one to the other you should consider looking at more powerful CPUs. Neither of these will be able to run the latest games in any playable way.

The Core 2 Duo has 1 more core than the Celeron M 550. However, while the Core 2 Duo will probably perform better than the Celeron M 550, both CPUs are likely to struggle with the latest games, and will almost certainly bottleneck high-end graphics cards. Both CPUs also have quite low clock frequencies, which means recent games will have to be played at low settings, assuming you own an equivalently powerful GPU.

More important for gaming than the number of cores and threads is the clock rate. Problematically, unless the two CPUs are from the same family, this can only serve as a general guide and nothing like an exact comparison, because the clock cycles per instruction (CPI) will vary so much.

The Core 2 Duo and Celeron M 550 are not from the same family of CPUs, so their clock speeds are by no means directly comparable. Bear in mind, then, that while the Celeron M 550 has a 0.8 GHz faster frequency, this is not always an indicator that it will be superior in performance, despite frequency being crucial when trying to avoid GPU bottlenecking. In this case, however, the difference is probably a good indicator that the Core 2 Duo is superior.

Aside from the clock rate, the next-most important CPU features for PC game performance are L2 and L3 cache size. Faster than RAM, the more cache available, the more data that can be stored for lightning-fast retrieval. L1 Cache is not usually an issue anymore for gaming, with most high-end CPUs eking out about the same L1 performance, and L2 is more important than L3 - but L3 is still important if you want to reach the highest levels of performance. Bear in mind that although it is better to have a larger cache, the larger it is, the higher the latency, so a balance has to be struck.

The Core 2 Duo has a 1024 KB bigger L2 cache than the Celeron M 550, but neither of the CPUs have L3 caches, so the Core 2 Duo wins out in this area with its larger L2 cache.

The maximum Thermal Design Power is the power in Watts that the CPU will consume in the worst case scenario. The lithography is the semiconductor manufacturing technology being used to create the CPU - the smaller this is, the more transistors that can be fit into the CPU, and the closer the connections. For both the lithography and the TDP, it is the lower the better, because a lower number means a lower amount of power is necessary to run the CPU, and consequently a lower amount of heat is produced.

The Core 2 Duo has a 22 Watt lower Maximum TDP than the Celeron M 550 (though they were created with the same size 65 nm manufacturing technology). What this means is the Core 2 Duo will consume significantly less power and consequently produce less heat, enabling more prolonged computational tasks with fewer adverse effects. This will lower your yearly electricity bill significantly, as well as prevent you from having to invest in extra cooling mechanisms (unless you overclock).

CPU Core Details

CPU CodenameYonahMerom
MoBo SocketSocket 479Socket P
Notebook CPUyesyes
Release Date05 Jan 200605 Sep 2007
CPU LinkGD LinkGD Link
Approved

CPU Technical Specifications

CPU Cores2vs1
Clock Speed1.2 GHzvs2 GHz
Turbo Frequency-vs-
System Bus 533 MHzvs-
Max TDP9 Wvs31 W
Lithography65 nmvs65 nm
Bit Width32 Bitvs-
Voltage Range0.85V - 1.1V KBvs-
Virtualization Technologyyesvsno
Comparison

CPU Cache and Memory

L1 Cache Size64 KBvs64 KB
L2 Cache Size2048 KBvs1024 KB
L2 Cache Speed-vs-
L3 Cache Size-vs-
ECC Memory Supportnovsno
Comparison

CPU Graphics

Graphics
Base GPU Frequency-vs-
Max GPU Frequency-vs-
DirectX-vs-
Displays Supported-vs-
Comparison

CPU Package and Version Specifications

Package Size35mm x 35mmvs-
Revision-vs-
PCIe Revision-vs-
PCIe Configurations-vs-

Gaming Performance Value

Performance Value

CPU Mini Review

Mini ReviewCore 2 is a brand encompassing a range of Intel's consumer 64-bit x86-64 single-, dual-, and quad-core microprocessors based on the Core microarchitecture. The single- and dual-core models are single-die, whereas the quad-core models comprise two dies, each containing two cores, packaged in a multi-chip module. The introduction of Core 2 relegated the Pentium brand to the mid-range market, and reunified laptop and desktop CPU lines, which previously had been divided into the Pentium 4, Pentium D, and Pentium M brands.
The Core microarchitecture returned to lower clock rates and improved the usage of both available clock cycles and power when compared with the preceding NetBurst microarchitecture of the Pentium 4/D-branded CPUs. The Core microarchitecture provides more efficient decoding stages, execution units, caches, and buses, reducing the power consumption of Core 2-branded CPUs while increasing their processing capacity. Intel's CPUs have varied widely in power consumption according to clock rate, architecture, and semiconductor process, shown in the CPU power dissipation tables.
The Celeron brand has been used by Intel for several distinct ranges of x86 CPUs targeted at budget personal computers. Celeron processors can run all IA-32 computer programs, but their performance is somewhat lower when compared to similar CPUs with higher-priced Intel CPU brands. For example, the Celeron brand will often have less cache memory, or have advanced features purposely disabled. These missing features have had a variable impact on performance. In some cases, the effect was significant and in other cases the differences were relatively minor. Many of the Celeron designs have achieved a very high bang for the buck, while at other times, the performance difference has been noticeable. This has been the primary justification for the higher cost of other Intel CPU brands versus the Celeron range.