9.9
Check Prices $549
8.2
Check Prices $219
Select any two CPUs for comparison
VS

Gaming Performance Comparison

Recommended System Requirements
Game Ryzen R9 Threadripper 1900X Ryzen R5 1600
Cyberpunk 2077 51% 29%
Assassins Creed: Valhalla 34% 4%
Call of Duty: Black Ops Cold War 36% 7%
Genshin Impact 63% 46%
eFootball PES 2021 47% 23%
Marvel's Avengers 36% 7%
Watch Dogs Legion 34% 4%
FIFA 21 54% 33%
Mafia: Definitive Edition 47% 23%
Microsoft Flight Simulator 44% 19%

In terms of overall gaming performance, the AMD Ryzen R9 Threadripper 1900X is massively better than the AMD Ryzen R5 1600 when it comes to running the latest games. This also means it will be less likely to bottleneck more powerful GPUs, allowing them to achieve more of their gaming performance potential.

The Ryzen R9 Threadripper was released less than a year after the Ryzen R5 1600, and so they are likely to have similar levels of support, and similarly optimized performance when running the latest games.

Both CPUs exhibit very powerful performance, so it probably isn't worth upgrading from one to the other, as both are capable of running even the most demanding games at the highest settings (assuming they are accompanied by equivalently powerful GPUs).

The Ryzen R9 Threadripper has 2 more cores than the Ryzen R5 1600. 8 cores is probably excessive if you mean to just run the latest games, as games are not yet able to harness this many cores. The cores in the Ryzen R5 1600 is more than enough for gaming purposes. However, if you intend on running a server with the Ryzen R9 Threadripper, it would seem to be a decent choice.

The Ryzen R9 Threadripper has 4 more threads than the Ryzen R5 1600. Both the Ryzen R9 Threadripper and the Ryzen R5 1600 use hyperthreading. The Ryzen R9 Threadripper has 2 logical threads per physical core and the Ryzen R5 1600 has 2.

Multiple threads are useful for improving the performance of multi-threaded applications. Additional cores and their accompanying thread will always be beneficial for multi-threaded applications. Hyperthreading will be beneficial for applications optimized for it, but it may slow others down. For games, the number of threads is largely irrelevant, as long as you have at least 2 cores (preferably 4), and hyperthreading can sometimes even hit performance.

More important for gaming than the number of cores and threads is the clock rate. Problematically, unless the two CPUs are from the same family, this can only serve as a general guide and nothing like an exact comparison, because the clock cycles per instruction (CPI) will vary so much.

The Ryzen R9 Threadripper and Ryzen R5 1600 are not from the same family of CPUs, so their clock speeds are by no means directly comparable. Bear in mind, then, that while the Ryzen R9 Threadripper has a 0.6 GHz faster frequency, this is not always an indicator that it will be superior in performance, despite frequency being crucial when trying to avoid GPU bottlenecking. In this case, however, the difference is enough that it possibly indicates the superiority of the Ryzen R9 Threadripper.

Aside from the clock rate, the next-most important CPU features for PC game performance are L2 and L3 cache size. Faster than RAM, the more cache available, the more data that can be stored for lightning-fast retrieval. L1 Cache is not usually an issue anymore for gaming, with most high-end CPUs eking out about the same L1 performance, and L2 is more important than L3 - but L3 is still important if you want to reach the highest levels of performance. Bear in mind that although it is better to have a larger cache, the larger it is, the higher the latency, so a balance has to be struck.

The Ryzen R9 Threadripper and the Ryzen R5 1600 have the same L2 cache size, and the same L3 cache size, so in terms of cache-related gaming performance, we have to look back to the clock rate, where the Ryzen R9 Threadripper wins out.

The maximum Thermal Design Power is the power in Watts that the CPU will consume in the worst case scenario. The lithography is the semiconductor manufacturing technology being used to create the CPU - the smaller this is, the more transistors that can be fit into the CPU, and the closer the connections. For both the lithography and the TDP, it is the lower the better, because a lower number means a lower amount of power is necessary to run the CPU, and consequently a lower amount of heat is produced.

The Ryzen R5 1600 has a 115 Watt lower Maximum TDP than the Ryzen R9 Threadripper (though they were created with the same size 14 nm manufacturing technology). What this means is the Ryzen R5 1600 will consume significantly less power and consequently produce less heat, enabling more prolonged computational tasks with fewer adverse effects. This will lower your yearly electricity bill significantly, as well as prevent you from having to invest in extra cooling mechanisms (unless you overclock).

CPU Core Details

CPU CodenameThreadripperZen
MoBo SocketSocket TR4Socket AM4
Notebook CPUnono
Release Date10 Aug 201711 Apr 2017
CPU LinkGD LinkGD Link
Approved

CPU Technical Specifications

CPU Cores8vs6
CPU Threads16vs12
Clock Speed3.8 GHzvs3.2 GHz
Turbo Frequency4 GHzvs3.6 GHz
Max TDP180 Wvs65 W
Lithography14 nmvs14 nm
Bit Width64 Bitvs64 Bit
Max Temperature68°Cvs-
Virtualization Technologynovsno
Comparison

CPU Cache and Memory

L1 Cache Size768 KBvs512 KB
L2 Cache Size4096 KBvs4096 KB
L3 Cache Size16 MBvs16 MB
Max Memory Size-vs-
Memory Channels-vs-
ECC Memory Supportnovsno
Comparison

CPU Graphics

Graphics
Base GPU Frequency-vs-
Max GPU Frequency-vs-
DirectX-vs-
Displays Supported-vs-
Comparison

CPU Package and Version Specifications

Package Size-vs-
Revision-vs-
PCIe Revision-vs-
PCIe Configurations-vs-

Gaming Performance Value

Performance Value

CPU Mini Review

Mini ReviewThe Ryzen R9 Threadripper 1900X is a very high-end CPU based on AMD's 14nm, Zen microarchitecture. It offers 8 physical cores (16 logical), initially clocked at 3.8GHz, which may go up to 4.0GHz using Turbo Boost. It has an unlocked multiplier therefore it can be overclocked using traditional methods. It has 16MB of L3 Cache. Level 3 cache is a static memory bank of a processor and it is used to feed it instructions. This processor also supports DDR4 based RAMs with maximum memory support of 128GB. It has a maximum Thermal Power Design of 180W. It is on par with competitor processors. Among its many features, Enmotus FuzeDrive for AMD Ryzen, AMD SenseMI Technology, AMD Ryzen VR-Ready Premium, Virtualization, AES, AVX2, FMA4, XFR (Extended Frequency Range) It doesn't feature an integrated GPU. The AMD Ryzen 9 1900X's high core count and high clock speed make it a great but expensive option for gamers. It will run AAA games very well. While a high clock speed is a priority for gaming, 8 cores is excessive for most gaming applications.The Ryzen R5 1600 is a high-end CPU based on AMD's 14nm, Zen microarchitecture. It offers 6 physical cores (12 logical), initially clocked at 3.2GHz, which may go up to 3.6GHz using Turbo Boost. It has an unlocked multiplier therefore it can be overclocked using traditional methods. It has 16MB of L3 Cache. Level 3 cache is a static memory bank of a processor and it is used to feed it instructions. This processor also supports DDR4 based RAMs with maximum memory support of 64GB. It has a maximum Thermal Power Design of 65W. It is on par with competitor processors. Among its many features, Simultaneous Multithreading, Cool n Quiet, CoolCore Technology, Extended Frequency Range (XFX), Pure Power and Precision Boost are enabled. It doesn't feature an integrated GPU. This CPU is likely to offer excellent computational performance and will not be the bottleneck in any modern gaming PC.